الحاجة إلى ميكانيكا الكم وحدود الميكانيكا الكلاسيكية بالتأكيد الفيزياء
علم قائم على التجربة بشكلٍ أساسي، ويجب على أي نظرية أن توافق التجارب تماماً قبل الاعتراف بصحة هذه النظرية لتكون نظرية فيزيائية.
بعد نصف القرن التاسع عشر أظهرت نتائج بعض التجارب المتعلقة بدراسة سلوك الذرات والجزيئات نتائج غير موافقة (غير موافقة تماماً، أو غير موافقة بشكلٍ كامل) للتفسير الكلاسيكي لهذه الظواهر،
ومن هنا ظهرت الحاجة لإعادة التفكير في بعض مبادئ الفيزياء الأساسية وظهرت ميكانيكا الكم.[٤] الحاجة إلى نظرية الكم برزت من عجز الفيزياء الكلاسيكية تفسير بعض الظواهر، وكان من أبرز هذه الظواهر إشعاع الجسم الأسود،
والظاهرة الكهروضوئية، وتأثير كومبتون،
بالإضافة إلى خطوط الانبعاث لذرة الهيدروجين. الحاجة لتفسير هذه الظواهر وغيرها ولدت ميكانيكا الكم، وميكانيكا الكم بدورها ولدت تفسيراً للعديد من الظواهر الأخرى الأكثر تعقيداً، والتي لربما لم نكن لنتمكن من ملاحظتها لولا ظهور ميكانيكا الكم في الأساس.
إشعاع الجسم الأسود أي جسم موجود في الطبيعة يقوم بإشعاع أمواج كهرومغناطيسية بأطوال موجية مختلفة، والجسم الذي يُعيد إشعاع جميع الأشعة الساقطة عليه بشكلٍ كاملٍ يُسمي (بالجسم الأسود). ويظهر منحنى إشعاع الجسم الأسود (بالإنجليزية: Black Body Radiation)
أن بعض الأطوال الموجية التي يُشعّها هذا الجسم سوف تمتلك طاقة أعلى من غيرها (بشكلٍ عام فإنه سوف يمتلك كل طول موجي من الطيف الكهرومغناطيسي مقداراً خاصّاً به من الطاقة). منحنى الجسم الأسود
(أو الطيف الذي سوف يشعّه الجسم الأسود) يعتمد فقط على درجة حرارة الجسم الأسود.[٧] تقوم الفيزياء الكلاسيكية بتفسير هذه الظاهرة عبر القول بأن الطيف الكهرومغناطيسي يتولد من اهتزاز الشحنات الكهربائية؛ أي تغييرها لحالتها الحركية، وهذا يتضمن تغير هذه الشحنة لسرعتها أو اتجاهها).
كما أنه من المعروف أن الجسم الأسود سوف يقوم بالإشعاع إذا تم تسخينه،
أي إنه عند تسخين الجسم الأسود فإن الإلكترونات الموجودة فيه سوف تهتز، وبما أن الإلكترونات هي أجسام مشحونة فإن الجسم الأسود سوف يشع طيفاً كهرومغناطيسياً نتيجة هذا التسخين، وكلما زادت درجة حرارة هذا الجسم فإنه سوف يسطع أكثر.
بالرغم من أن هذا التفسير لعملية الإشعاع جيد جداً، إلا أن الفيزياء الكلاسيكية لم تنجح في تفسير شكل منحنى الجسم الأسود.
بعد عدة محاولات كلاسيكية فاشلة لتفسير شكل المنحنى جاء العالم ماكس بلانك
(بالإنجليزية: Max Planck) وفسّر شكل المنحنى عن طريق افتراض أن الطاقة تأتي على شكل حزمٍ متقطّعة تتناسب مع تردد هذه الاهتزازت
(أي إن الطاقة تتناسب مع عدد الاهتزازات في وحدة الزمن)، وسمّى بلاك هذه الحزم المتقطعة بالكمّات (بالإنجليزية: Quanta).
تأثير كومبتون تأثير كومبتون (بالإنجليزية: Compton Effect)
يؤكد لنا بأن الضوء يمكن معاملته كجسيم يُعرف بالفوتون (بالإنجليزية: Photon)،
وهذا عن طريق تجربة معينة.
بالتأكيد هذه الظاهرة غير متوافقة مع الفيزياء الكلاسيكية التي تُعامل الضوء وكأنه موجة فقط،
وتجزم باستحالة معاملته كجُيسم،
حيث إنه لا يمكن تفسير هذه الظاهرة إلا بالاستعانة بخاصيّة هي فقط مقتصرة على الأجسام وهي الزخم.
لو كان لدينا إلكترون ساكن،
وأطلقنا عليه شعاعاً ضوئياً فإن الضوء سوف يتشتّت عن هذا الإلكترون، ولكن الإلكترون في الوقت نفسه سوف يكتسب زخماً ويتحرك. وحسب قانون حفظ الزخم الخطي
-والذي يُعتبر واحداً من أهم القوانين في الطبيعة-
فإنه يجب أن يكون الزخم قبل التصادم مساوياً للزخم بعد التصادم، ومن الجدير بالذكر أنه بقولنا (تصادم)
فهذا يعني أننا نتحدث عن جسيمات لأن الأمواج لا تتصادم، والدليل القاطع على أن الذي حدث هو تصادم
هو أن الإلكترون اكتسب زخماً خطياً عند سقوط الفوتون عليه. الآن بما أن الزخم قبل التصادم كان صفراً وبعد التصادم أصبح له قيمة غير الصفر فإنه بذلك يمكن الجزم بأن الضوء يمكن معاملته كجسيم.
بعض الأفكار الأساسية في ميكانيكا الكم يوجد العديد من الأفكار المهمة والأساسية جداً في ميكانيكا الكم، والتي يقوم عليها هذا العلم،
وفيما يأتي سوف نذكر بعض هذه الأفكار:[٨] الطاقة تأتي على شكل حزم منفصلة تُعرف بالكمّات ولا يمكن أن تأتي على شكل حزمة متصلة.
لا يمكن تطبيق الفيزياء الكلاسيكية في المستوى الذري على الظواهر الطبيعية (مثل قوانين نيوتن) فهي ستفشل في تفسير الظاهرة. مبدأ عدم التحديد
(بالإنجليزية: The Uncertainty Principle)
وهو المبدأ الذي يُخبرنا بعدم مقدرتنا على تحديد موقع الجسيم وزخمه بدقة عالية بشكلٍ متزامن (أيضاً يمكن تطبيقه على الطاقة وعلى الزمن، إذ إنه لا يمكن تحديد طاقة النظام بدقة وكم من الوقت سوف يبقى محتفظاً بهذه الطاقة).
ليست هناك تعليقات:
إرسال تعليق